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Modeling and analysis of a bacterial stochastic switch
Brian Munsky and Mustafa Khammash

Abstract— Deterministic models fail to capture certain impor-
tant dynamics in the subcellular environment due to the discrete
stochastic nature of the molecular interactions at the gene level.
Such discrete stochastic interactions are exploited in the cell
to implement stochastic switches whose state are predictable
only in a statistical sense. This absence of determinism and
the inherent variability resulting from it play an important
role in creating biological diversity that improves the chance
for survivability. This paper will use a simplified model of
the Pap switch in E. coli in order to illustrate a variety of
computational methodologies. It will be shown that continuous
time discrete-state Markov chains are natural tools for modeling
this switch, and a review of these approaches will be provided.
Using the recently introduced Finite State Projection algorithm,
it is shown that the probability of a given switch position can
be computed within any a-priori tolerance without resorting
to the Monte-Carlo simulations, which generally lack accuracy
guarantees.

I. INTRODUCTION

Modern genetic and molecular biology techniques have
successfully revealed elaborate regulatory networks, which
ultimately control various biologic responses. A major goal
of Systems Biology is to utilize this wealth of information
to produce predictive models of how individual regulatory
steps integrate to produce observable responses. Such models
could assist biologists and biochemists to (1) understand
complicated regulatory phenomena, (2) pinpoint key regu-
latory features and alter those features to achieve desired
outcomes, and (3) achieve better understanding of how and
why regulatory systems have evolved in different species.

One of the major difficulties encountered in achieving
good predictive models is that cellular processes often in-
volve random molecular events and are subject to vast
amounts of signal noise. In spite of this randomness, the
events and processes that make up cellular function are
highly ordered and often tightly regulated. Random fluctua-
tions within the cell are frequently suppressed through cel-
lular networks that employ feedback and implement cellular
“filters.” These low pass filters suppress fast variations but
admit the slowly varying components of cellular signals. In
other important cases, however, randomness works toward
the cell’s advantage. Isogenic heterogeneity directly results
from a random step that is exploited specifically to that end;
for example, the lysis/lysogeny decision in bacteriophage
lambda (phage), utilizes randomness to operate a genetic
switch [1]. Here, a homogeneous and genetically identical
phage population takes two separate paths with one fraction
of the population following a lytic fate, while the other
following a lysogenic fate.

Understanding the impact of random fluctuations in large
cellular networks, presents one of the most challenging ques-

tions in systems biology. Deterministic models of biochemi-
cal networks have focused on tracking the concentrations of
key reactants (e.g. proteins, mRNA molecules, etc.) within
the cell as a function of time. Here reaction rate equations are
derived based on Michaelis-Menten type kinetics that result
in a system of nonlinear differential equations. When reactant
species are present in large numbers, fluctuations may not
be important, and their mean behavior can be accurately
captured by their concentration within the cell. However,
many biological networks frequently involve molecules that
are present in small numbers. In these cases random fluctua-
tions may be amplified significantly and have great impact on
the cell. Deterministic models are generally not adequate for
modeling such fluctuations. Furthermore, continuous repre-
sentations of very small reactant quantities fail to capture the
discrete behavior of such reactants. Instead, these processes
must be modeled using discrete and stochastic models.

As stochastic modeling of biological processes becomes
more important to the scientific community, more powerful
computational tools are needed. Many Monte Carlo methods
have been proposed to meet these needs including the
Stochastic Simulation Algorithm[2], [3], various τ leaping
approaches [4], [5], [6], [7], and systems partitioning meth-
ods [8], [9], [10], [11]. More recently, the authors have
proposed the Finite State Projections algorithm [12], which
directly approximates to the evolution of the probability dis-
tributions without computing individual realizations. In this
paper we will evaluate a few of these computational meth-
ods on a simplified stochastic model of the pyelonephritis-
associated pili (Pap) system controlling expression of Pap
pili in E. coli.

The next section provides a brief description of the Pap
model. In the section 3 we explain how a few numerical
solution schemes may be applied to the Pap switch. In
section 4 we compare and contrast the results found using
each of the schemes. Finally, we provide a few concluding
remarks regarding the efficiency and accuracy of the different
computational methods in regard to the Pap switch model.

II. MODELING

The model of the Pap system to be considered in this
paper is relatively simple with a single operon and three reg-
ulatory factors: leucine-responsive regulatory protein (Lrp),
DNA adenine methylase (Dam), and the local pap-encoded
regulatory protein PapI.

The pap operon(Fig. 1a) provides the basic structure of
the switch and defines the rules of all regulatory actions. The
operon contains six pap DNA Lrp binding sites spaced three
helical turns apart We have designated the sites 1 to 6, where



2

(a) (b)

Fig. 1. (a) The regulatory region of the pap operon. (b) Schematic of the
four different possible Lrp binding patterns.

Fig. 2. Schematic of the 16 different possible methylation patterns.

1-2-3 correspond to the sites proximal to the papB promoter,
and sites 4-5-6 are those distal to the papB promoter. The
regulatory region also contains four DNA sites with the
genetic sequence GATC. Two of these occur at Lrp binding
site 2 (top and bottom strand), designated GATCprox. The
other two occur at site 5, designated GATCdist. These sites
are targets for Dam, which places a methyl group on the
adenine of the GATC sequence.

Lrp binds cooperatively and reversibly in sets of three
dimers at the proximal or distal sites forming four possible
Lrp binding patterns (see Fig. 1b). The affinity of each
pattern depends upon the methylation pattern of the operon
and on the population of PapI in the system[13]. Mutational
analyses shows that disrupting Lrp binding site 2 increases
pap activation, and disrupting Lrp at site 5 decreases pap
activity[14]. Thus, we assume that pap is transcribed only
when:

(1) Lrp has bound to the distal sites, and
(2) Lrp has not bound to the proximal sites (see Fig. 1b,

circled state).
Dam irreversibly methylates the pap operon in four

GATC locations: top-prox, bottom-prox, top-dist and bottom-
dist. As a result, the operon can achieve sixteen different
methylation patterns (See Fig. 2). Examination of the pap
DNA methylation patterns showed that in phase ON cells
GATCprox is methylated and GATCdist is nonmethylated
[15]. Based upon this information, we add the additional
requirements for pap transcription:

(3) Dam has methylated the proximal sites (top and
bottom), and

(4) Dam has not fully methylated the distal site (see Fig.
2, circled states).

Combining the Lrp binding patterns with the Dam methy-
lation patterns, there are 64 mutually exclusive pap operon

configurations. Let the vector g = [g1, g2, . . . , g64]T denote
the populations of all configurations, g is a vector of zeros
except for a single value of one. The operon changes from the
ith configuration to another through 192 different stochastic
reactions. 64 of these reactions, µ = {1, 2, . . . , 64}, are
bimolecular1 Lrp association events where Lrp binds to the
operon at sites 1-2-3 or 4-5-6. The propensity function, aµ,
is a measure of the liklihood of these reactions and depends
on the current configuration and the population of Lrp: aµ =
cµ[gi][Lrp], where cµ is the reaction rate and [gi] and [Lrp]
denote the integer populations of the ith operon configuration
and Lrp, respectively. There are 64 monomolecular2 reaction
events, µ = {65, 65, . . . , 128}, in which Lrp dissociates
from the operon; these have propensity functions given
by: aµ = cµ[gi]. Finally there are 64 bimolecular Dam
methylation events, µ = {129, 130, . . . , 192} with propensity
function given by: aµ = cµ[gi][Dam]. Of the 64 operon
configurations, only three satisfy requirements 1-4 above
and can result in Pap transcription. When in one of these
three configurations, the local protein PapI is produced in a
Poisson pure birth process with constant propensity function
ab = cb. PapI can also degrade in a monomolecular event
with propensity function: ad = cd[r], where [r] denoted the
population of PapI. In turn, PapI increases the affinity of
Lrp for the distal site and creates a positive feedback loop:
cµ = cµ(r) for µ ∈ {65, 66, . . . , 128}.

For a known amount of Dam and Lrp in the system, the
vector pair xi = (gj , r), defines the state of the system. We
can enumerate all of the possible states as {x1,x2, . . .} In
this framework, chemical reactions are simply jumps from
xi to xj . The direction of the µth jump is given by the
reaction stoichiometry, xj = xi + νµ. It has been shown
that if a chemically reacting system is well-mixed and has
a fixed volume and fixed temperature, then that system is
a Markov process[16], [17], and the waiting times between
each reaction are exponentially distributed with mean equal
to the inverse of the propensity function give by aµ =
aµ(xi). For our model, we assume that the system begins
in the state x1 = [g1, 0]: there is no prior methylation, there
is no Lrp bound to the operon, and there is no PapI in
the system. For the purposes of this model, we define the
system to be ON if there are more than 20 molecules of
PapI in the system; otherwise the system is considered to
be OFF. For our enumeration, this definition corresponds to
the system being in any state xi where i > 1280. We are
interested in determining the probability that the system is
ON as a function of time. In the next section we discuss
how one would obtain these results for various computational
methodologies.

III. NUMERICAL METHODS

Under our assumptions, the Pap system behaves as a
continuous time, discrete space Markov process with ex-
ponentially distributed waiting times. We are interested in
computing the probabilities of the various possible system

1Involve two reactive species
2Involve only one reactive species
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states as functions of time. For the states {x1,x2, . . .}, we
define the corresponding probability density state vector as
P := [P1, P2, . . .]T . The evolution of P over time can be
described by the possibly infinite dimensional set of linear,
time invariant ordinary differential equations known as the
Chemical Master Equation (CME) [16], [17]: Ṗ = AP.
In most cases the CME has not been directly solved, and
analyses are often conducted using Monte Carlo algorithms.
In the next subsection, we will discuss a few of these
algorithms in relation to the Pap switch model.

A. Monte Carlo Algorithms

The first and perhaps most widely used Monte Carlo
algorithm for stochastic chemical kinetics is Gillespie’s
Stochastic Simulation Algorithm (SSA)[2], [3]. In the SSA,
one simulates the chemical process one reaction event at a
time. The basic idea is as follows. At any time, t, the system
is at some specific state, x(t) = xi. There are at most M
possible reaction that the system can make beginning at xi,
each with a propensity depending solely on xi: aµ = aµ(xi)
for µ = {1, 2, . . . ,M}. The time until the next reaction, τ ,
is generated from a single exponentially distributed random

variable with a mean equal to
(∑M

µ=1 aµ(xi)
)−1

. Once
τ has been generated, one can generate a second random
number and the propensity functions to choose which of
the M reactions occurs. The time of the simulation is
incremented to t + τ and the state of the system is updated
by the stoichiometry of the chosen reaction. The process is
continued until the final time of interest.

Although the SSA produces detailed realizations for
stochastically evolving chemical systems, the method be-
comes very computationally expensive when the system un-
dergoes enormous numbers of individual reactions. In these
cases it is often necessary to sacrifice some of the precision
of the SSA for faster, yet approximate methods such as time-
leaping methods and system-partitioning methods.

B. τ leaping methods

Time-leaping methods rely on the τ leap assumption that
many reaction events will occur in a period of time without
significantly changing the reaction propensity functions [18].
Using this assumption, one can simulate the reactions during
each time step as a set of independent pure birth (Poisson)
processes. A major difficulty for the τ -leaping method results
when too many critical reactions are included in a single
leap such that some molecular populations become negative.
More recent versions of τ -leaping, including binomial τ
leaping [7] and adaptive and implicit τ leaping [4], [5], [6]
are more robust than their predecessors, but their accuracy
remains severely compromised when very small populations
of interacting molecules result in fast, dramatic changes in
propensity functions. For the Pap model, this is a particularly
important concern. The majority of the reactions involve the
pap operon, which is present in the cell in a single copy, and
nearly every reaction violates the τ leap assumption. As a
result τ leaping cannot be used for the Pap model.

C. System partitioning methods

The second approach to speeding up the SSA involves
separating the system into slow and fast partitions, ap-
proximating the dynamics of the fast partition, and then
stochastically simulates the remaining slow partition.[8], [9],
[10], [11] For such a scheme to work, it is necessary that
there is a sufficient gap between the between fast and slow
reactions. Depending upon the parameters involved in the Lrp
binding and unbinding reactions, the Pap model described
above may be amenable to such an approach. For example,
if the Lrp reactions were sufficiently fast, we could assume
that the four Lrp binding configurations (shown in Figure
2) would reach a probabilistic steady state before any other
event (Dam methylation, PapI production, or PapI degra-
dation) may occur. Thus, under this assumption we could
algebraically compute a distribution for the four Lrp binding
configurations as a function of the 16 Dam methylation
patterns and PapI population. By skipping the individual Lrp
events and concentrating on the other stochastic events, we
significantly reduce the number of events in each simulation.

For any of these Monte Carlo methods, a statistical de-
scription of the system’s dynamics, such as the probability
density, mean, or variance, requires a large number of
realizations. To analyse rare, but important biological traits,
extremely large numbers of simulations may be required.
For example, the Pap Pili epigenetic switch in E. coli has
an OFF to ON switch rate on the order of 10−4 per cell per
generation [19]. In order to capture this switch rate with a
relative accuracy of one percent, one would require far more
than one million Monte Carlo simulations.

D. The Finite State Projection Method

Recently, the authors proposed a promising new algorith-
mic approach to solving the CME: the Finite State Projection
(FSP) algorithm[12]. This algorithm provides an analytical
approximation to the CME without generating Monte Carlo
simulations and includes a guarantee as to its own accuracy.

As stated above the probability distribution of the system
evolves according to a set of linear ordinary differential
equations: Ṗ(t) = AP(t), where P(t) is a vector of
the probabilities [P1(t), P2(t), . . .] of every possible state
[x1,x1, . . .], and A is the generator matrix that expresses
the stochastic rates of transition from one state to another.
The columns and rows of A are uniquely defined by the
reaction stoichiometries and propensities and the choice
of the enumeration of our state space. A has some very
useful properties: it is independent of t; all of its diagonal
elements are non-positive; all its off-diagonal elements are
non-negative; and all its columns sum to zero.

If the system of equations were finite, then the solution
could be found using a matrix exponential. However, P(t)
has infinite dimension–the problem cannot generally be
solved exactly, but a projection may be made to achieve
an arbitrarily accurate approximate solution. It is helpful to
introduce some convenient notation. Let J = {j1, j2, j3, . . .}
denote an index set. For any vector v let vJ denote the
subvector of v whose elements are chosen according to J ,
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and for any matrix A, let AJ denote the submatrix of A such
that the rows and columns have been chosen according to J .
For example, if J is defined as {3, 1}, then: a b c

d e f
g h k


J

=
[

k g
c a

]
.

In a previous work, we stated the following theorem3.
Theorem 2.1 Consider any Markov process in which the
probability density state vector evolves according to the
linear ODE:

Ṗ(t) = A ·P(t),

If for some finite index set J, ε > 0, and tf ≥ 0,

1T exp(AJ tf )PJ(0) ≥ 1− ε, (1)

then

exp(AJ tf )PJ(0) ≤ PJ(tf ) ≤ exp(AJ tf )PJ(0) + ε1. (2)

Using this FSP theorem, if we can find a principle sub-
matrix AJ of A, such that:

1T exp(AJ t)PJ(0) ≥ 1− ε,

then we are guaranteed that the probability density for every
state at time, t = tf , is within the bounds given by:

exp(AJ t)PJ(0) ≤ PJ(t) ≤ exp(AJ t)PJ(0) + ε1.

We can use an algorithmic approach to add more and more
states to the finite projection until we obtain an error, ε, that
is less than a prespecified bound.

Like the SSA, the FSP algorithm is amenable to some
time-partitioning approximation schemes. For example, if
the Lrp binding/unbinding reactions are very fast in the
Pap model, one can assume that these four configurations
instantaneously reach probabilistic equilibrium and thereby
reduce the order of the CME by a factor of four.

In the next section, we solve the CME for the Pap problem
with two different computational methods: the SSA and the
FSP. For each method we show results with and without
making the assumption that Lrp binding/unbinding reaches
probabilistic equilibrium.

IV. RESULTS AND DISCUSSION

Fig. 3 illustrates the probability that the system is ON
(contains at least 20 molecules of PapI) as a function of
time for three different sets of Lrp binding/unbinding rates:
slow, moderate, and fast. The three solid curves have been
obtained using the FSP formulation with an error tolerance
of 10−5. A fourth dashed curve illustrates the results using
the FSP with the assumption that Lrp binding/unbinding
reaches probabilistic equilibrium before any other reaction.
The figure shows that as the Lrp reactions become faster,
the dynamics of the system approaches the approximate
solution, suggesting that there is some threshold in Lrp

3For proof see Munsky and Khammash, 2006

Fig. 3. Proportion of ON cells versus time for three sets of Lrp reaction
rates. Solid lines are computed using the FSP with an error tolerance of
10−5; the dashed line is computed using the FSP with an assumption of
probabilistic equilibrium on the Lrp association/dissociation reactions.

TABLE I
A COMPARISON OF THE EFFICIENCY AND ACCURACY OF THE FSP, SSA,

AND APPROXIMATE FSP AND SSA METHODS.

Method # Simulations Time (s)a Relative Errorb

FSP Does not apply. c 42.1 < 0.013%
FSP approx. Does not apply. 3.3 ≈ 1.3%
SSA 104 > 26 days Not available
SSA approx. 104 9.8 ≈ 16%
SSA approx. 105 94.9 ≈ 7.7%
SSA approx. 106 946.2 ≈ 1.6%

aAll computations have been performed in Matlab 7.2 on a 2.0
MHz PowerPC G5.

bError in switch rate is computed at t = 4000s
cThe FSP is run only once with a specified allowable total error

of 10−5.

binding/unbinding rates above which the assumption of prob-
abilistic equilibrium is valid. Below that threshold, however,
the equilibrium assumption is not valid and the full SSA or
full FSP methods must be used.

Fig. 4 shows the results for the fast Lrp reaction rates as
computed with the full FSP (dashed line), and the approxima-
tions of both the SSA (three gray lines corresponding to sets
of 104, 105 and 106 simulations) and the FSP (solid black
line)4. From the figure one can observe that as the number
of runs increases, the prediction of the approximate SSA
approaches that of the approximate FSP solution; however,
even after a million runs the SSA solution, the error in the
SSA solution is yet visible. Table I provides relative errors
errors in the probability of being ON at time t = 4000 for
the FSP, the approximate FSP and the approximate SSA
algorithms. For reference the computational time of each
method is also included. In terms of accuracy, the FSP vastly
outperforms the other two algorithms.

4For the fast Lrp reaction rates, a single realization of the full SSA
requires more than 230 seconds. 105 realizations requires a total simulation
time of more than 260 days.
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Fig. 4. Proportion of ON cells versus time for fast Lrp reaction rates. The
dashed line corresponds to the FSP computation with an error tolerance of
10−5. The solid lines are computed with an assumption of probabilistic
equilibrium on the Lrp reactions. The smooth black line is computed
using the approximate FSP algorithm, and the gray lines correspond to
computations with the approximate SSA. Se also Table I.

V. CONCLUSIONS

This paper has outlined a simplified model of the Pap
switch in E. coli, and has reviewed a few numerical pro-
cedures for the numerical solution of the Chemical Master
Equation that arises in this model. Because the Pap switch
occurs on the order of once per thousand cells per generation,
great computational precision is necessary. Two types of
numerical solutions were considered: Monte Carlo algo-
rithms and the Finite State Projection algorithm. To obtain
meaningful statistical results, Monte Carlo algorithms require
the generation of a vast number of individual realizations.
For the Pap model, a single run of the Stochastic Simulation
Algorithm (SSA) takes nearly five minutes, and the necessary
precision is unobtainable in a reasonable amount of time.
Furthermore, because the majority of the reactions involve a
gene that is present as a single copy within the cell, every
individual reaction is important, and τ leaping algorithms
offer no advantage over the basic SSA. Time partitioning
approximations of the SSA, in which some reactions are
assumed to reach instantaneous probabilistic equilibrium, can
significantly speed up the computation, but are only valid for
some sets of parameters.

As an attractive alternative to Monte Carlo algorithms,
the FSP directly computes the system’s probability density
vector at a given time without requiring the computation of
large numbers of process realizations. The FSP automatically
guarantees upper and lower bounds on the solution of the true
system. For some sets of parameters in the Pap model, where
the SSA takes too long, τ leaping is invalid, and system
partitioning methods provide inaccurate results, the FSP may
well be the only feasible tool. For other sets of parameters,
where system partitioning methods are applicable, the FSP
can benefit just as well as does the SSA.
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